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Abstract

There has been substantial recent change in coral reef communities. To date, most analyses have focussed on static patterns
or changes in single variables such as coral cover. However, little is known about how community-level changes occur at
large spatial scales. Here, we develop Markov models of annual changes in coral and macroalgal cover in the Caribbean and
Great Barrier Reef (GBR) regions. We analyzed reef surveys from the Caribbean and GBR (1996–2006). We defined a set of
reef states distinguished by coral and macroalgal cover, and obtained Bayesian estimates of the annual probabilities of
transitions between these states. The Caribbean and GBR had different transition probabilities, and therefore different rates
of change in reef condition. This could be due to differences in species composition, management or the nature and extent
of disturbances between these regions. We then estimated equilibrium probability distributions for reef states, and coral
and macroalgal cover under constant environmental conditions. In both regions, the current distributions are close to
equilibrium. In the Caribbean, coral cover is much lower and macroalgal cover is higher at equilibrium than in the GBR. We
found no evidence for differences in transition probabilities between the first and second halves of our survey period, or
between Caribbean reefs inside and outside marine protected areas. However, our power to detect such differences may
have been low. We also examined the effects of altering transition probabilities on the community state equilibrium, along a
continuum from unfavourable (e.g., increased sea surface temperature) to favourable (e.g., improved management)
conditions. Both regions showed similar qualitative responses, but different patterns of uncertainty. In the Caribbean,
uncertainty was greatest about effects of favourable changes, while in the GBR, we are most uncertain about effects of
unfavourable changes. Our approach could be extended to provide risk analysis for management decisions.

Citation: Lowe PK, Bruno JF, Selig ER, Spencer M (2011) Empirical Models of Transitions between Coral Reef States: Effects of Region, Protection, and
Environmental Change. PLoS ONE 6(11): e26339. doi:10.1371/journal.pone.0026339

Editor: Richard K. F. Unsworth, Swansea University, United Kingdom

Received May 17, 2011; Accepted September 25, 2011; Published November 2, 2011

Copyright: � 2011 Lowe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no funding or support to declare.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m.spencer@liverpool.ac.uk

Introduction

Coral reefs are complex and diverse ecosystems with high

economic and ecological value [1]. There have been substantial

changes in structure and functioning of coral reef communities

worldwide in recent decades [2,3,4,5], and perhaps over much longer

time scales [6,7]. Coral loss has been caused by a combination of

factors including global warming, land use changes that lead to

sediment and nutrient pollution, overfishing, predator outbreaks,

storms, and disease [8,9,10,11,12]. In some locations, mass coral

mortality has led to phase shifts in which reefs have become

dominated by macroalgae [2,13,14] or other organisms [15].

Studies of these changes generally fall into three categories.

First, studies of one or a few reefs can suggest hypotheses about

possible mechanisms, e.g. [2], and test these mechanisms using

small-scale experiments, e.g. [16]. Second, models can be used to

study the possible consequences of these mechanisms, e.g.

[17,18,19,20]. Third, analyses of large data sets can be used to

evaluate the evidence for patterns of change over large spatial

scales, e.g. [21,22,23].

The three approaches are complementary. Nevertheless, it may

be possible to increase the value of large data sets by fitting simple

dynamic models to them, combining the second and third

approaches and allowing us to project the long-term consequences

of current patterns of change. To date, most studies of large coral

reef data sets have concentrated on describing static patterns [e.g.

24] or changes in single variables such as coral cover over time,

e.g. [3,22,23]. For example, Bruno et al. [21] used a large database

of coral and macroalgal cover on many reefs between 1996 and

2006 to examine the extent of phase shifts from domination by

hard corals to domination by macroalgae. Principal component

analysis was used to calculate a phase shift index, measuring the

position of each reef on a scale from being dominated by corals to

being dominated by macroalgae. Linear regression was then used

to examine changes in the phase shift index over time. However,

there is scope for analyzing the dynamics of such large data sets in

more detail.

Here, we used a collection of data from coral reef monitoring

studies to investigate the dynamics of transitions between coral reef

states in the Caribbean and Great Barrier Reef. Our analysis is

based on simple Markov models of community dynamics.

Although Markov models are widely used for both marine and

terrestrial communities, e.g. [25,26,27,28,29], previous Markov

models of coral reefs have focussed on the small-scale dynamics of
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species occurrence at fixed points in space, e.g. [26,30,31].

Instead, we define a set of reef states (Table 1) consisting of

different levels of coral and macroalgal cover, and use empirical

data to estimate the probabilities of transitions between these

states. Similar approaches have a long history in the analysis of

vegetation dynamics, e.g. [32]. One novel aspect of our approach

is that we account for the uncertainty in parameter estimates using

Bayesian methods. With few exceptions [33], ecological Markov

models have tended to treat parameters as if they were known

exactly, when the reality is that they may be based on small

numbers of observations and therefore quite uncertain. Uncer-

tainty in parameter values carries through to uncertainty in the

behaviour of the model. The Bayesian approach makes it easy to

quantify this uncertainty, and thus to see whether apparent

differences in the behaviour of different models are ecologically

meaningful.

Additionally, we asked whether there were differences in

transition probabilities between the Great Barrier Reef and the

Caribbean, between the first and second halves of our 10-year

observation period, and between Caribbean reefs inside and

outside Marine Protected Areas (MPAs). We do not examine MPA

effects in the Great Barrier Reef, where only two of our sampled

reefs are outside MPAs. We used our models to project the

equilibrium regional pattern of reef states and cover of corals and

macroalgae if conditions remain as they were during the

observation period. We also examined the effects of changing

the probabilities of transitions between reef states on overall coral

and macroalgae cover. Such changes might result from environ-

mental change or alterations in management. Specifically, we

estimated future equilibrium reef states along a continuum of

scenarios, under which we modified transition probabilities to

reflect realistic changes in conditions unfavourable to coral, e.g.

increased sea surface temperature [34] and those more favourable

to coral, e.g. increased herbivory due to management [22,35].

Materials and Methods

Data
Reef state data came from coral reef monitoring studies in the

Greater Caribbean and Great Barrier Reef (GBR) regions

(Figure 1) that quantified the percent of the substratum cover of

living scleractinian corals and macroalgae as described in Bruno et

al. [21]. All surveys were performed between 1996 and 2006. The

Caribbean data set contained 100 pairs of observations on 69

reefs, while the GBR data set contained 374 pairs of observations

on 55 reefs. Quantitative survey data were collected in situ using

SCUBA on fore reef environments between 1 and 15 m depth

(mean depth: 6.9 m). Depth explains very little of the variation in

coral and macroalgal cover in these data [4](Information S1). We

assume that most sites are sufficiently similar that they could in

principle be in any reef state, although it would make little

difference to the analysis if there were physical constraints on the

states that could occur at a few sites. Surveys measured the

percentage of the substratum covered by living coral and fleshy or

calcareous macroalgae, primarily using some variant of the line-

transect technique, in which a transect (typically a 10–30 m

measuring tape or chain) was placed on the reef. The coverage of

coral and macroalgae was then estimated either in situ by recording

the number of points along each transect that overlaid corals,

macroalgae, etc. or by taking images of the reef substrate at these

points, which were then analyzed in the laboratory. All surveys

differentiated macroalgae from other algal groups. Following [36]

and others, we defined macroalgae (i.e., seaweed) as ‘‘larger

(canopy heights usually .10 mm), more rigid and anatomically

complex algal forms’’. This functional group includes erect

calcifying species (e.g., Halimeda spp.) but does not include

microalgae and filamentous algae (i.e., turfs) or crustose algae

[36]. Replicate cover measurements taken at different stations or

depths at a given location were pooled into a single mean estimate

for each reef in each year. Observations were made throughout

the year, but we ignore seasonal variation for simplicity. We

retained only those observations forming sequences of at least two

observations on the same reef in successive calendar years

(Caribbean: 69 reefs, median 2 observations per reef, range 2–7,

covering the years 1997–2006. Great Barrier Reef: 55 reefs,

median 9 observations per reef, range 2–11, covering the years

1996–2006).

Using spatial data on the boundaries of MPAs [22,37], reef

surveys that had latitude and longitude information were classified

as being inside or outside of Marine Protected Areas (MPAs). For

the MPA analysis, reef surveys that did not have spatial

information associated with them were excluded.

Reef state classification
Observations were classified into one of six states (labelled A to

F) representing different levels of cover of coral and macroalgae

(Table 1). The exact choice of category boundaries is arbitrary: we

put state boundaries at 50% because it is reasonable to describe a

reef with more than 50% cover of a component as dominated by

that component [21], and 25% because it is halfway between zero

and 50%. However, we show (Information S1) that changing these

boundaries does not substantially alter our conclusions.

Transitions between reef states
We used a simple Markov model to describe transitions between

reef states. We made the following assumptions:

1. Observations on reefs are independent realizations of the same

stochastic process.

2. The future state of a reef is conditionally independent of past

states, given the current state.

3. The probabilities of transitions between reef states are constant

over time.

4. The probabilities of transitions to each other reef state are the

same for all reefs in a given state.

These assumptions are unlikely to be strictly true. For example,

reefs are likely to show weak dependence through larval dispersal

[38] and cover alone does not give information on variation in size

structure or species composition, which may introduce historical

effects that our model would not capture[30]. However, making

these assumptions allowed us to use a simple modelling approach

that captures some of the main features of the data.

Table 1. Classification of observations into reef states (A–F)
by percent cover of hard corals and macroalgae.

State % coral %macroalgae

A #25 #25

B #25 25–50

C #50 .50

D 25–50 #25

E 25–50 25–50

F .50 #50

doi:10.1371/journal.pone.0026339.t001

Empirical Models of Coral Reef States
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Denote by pi(t) the proportion of reefs in state i at time t, and by pij

the probability that a reef in state j at time t will be in state i at time

t+1. If we arrange the proportion of reefs in each state as a vector

p(t)~

pA(t)

pB(t)

..

.

pF (t)

2
66664

3
77775

and the transition probabilities as a matrix

P~

pAA pAB � � � pAF

pBA pBB � � � pBF

..

. ..
.

P
..
.

pFA pFB � � � pFF

2
66664

3
77775, ð1Þ

then the expected proportions in each state at time t+1 are given by

the linear equation

p(tz1)~Pp(t): ð2Þ

Such models have been widely used for modelling successional

changes in communities, especially of sessile organisms [25,27,28].

Dividing the continuous bivariate distribution of coral and

macroalgal cover into discrete states has pros and cons. One

benefit was that it allowed us to use very simple, well-understood

mathematical models [25,27,28], and makes it easy to test

hypotheses about differences between regions. Conceptually, our

method is related to density-structured modelling approaches that

are sometimes used in plant demography [39,40,41,42], and to

models in which population trajectories are classified into discrete

states by direction [43]. In all these cases, discretization greatly

simplifies a difficult modelling problem. On the other hand, it is

likely that the discretization introduced some inaccuracy. A similar

situation exists in population biology, where size structured models

with discrete size classes are simple and commonly used, although

models that treat size as a continuous variable are more accurate

[44,45]. We are working on related methods of modelling

community dynamics that do not require discretization (K.

Żychaluk et al., unpublished).

Estimation of transition probabilities
Under our model assumptions, the numbers of transitions nij

out of a given state j into each other state i have a multinomial

distribution with parameters nj~
Pm
i~1

nij (where m is the total

number of states, in this case six) and pij , the probabilities of

transition to each state i from state j (with constraints 0ƒpijƒ1

and
Pm
i~1

pij~1). The most common approach to the analysis of

Markov chain models for communities is to obtain maximum

likelihood estimates of transition probabilities (described below)

and calculate point estimates of derived statistics of interest [28].

However, when the transition probabilities are estimated from

fairly small numbers of observations, they and any derived

statistics may be subject to considerable uncertainty. Bootstrap

estimates [33,46] are unlikely to be reliable for small sample sizes.

For example, if a given transition is never observed, the

maximum likelihood estimate of the transition probability is

zero. A bootstrap method would suggest that there is no

uncertainty in this estimate, when in fact a wide range of

nonzero values might be plausible.

To solve this problem, we used a Bayesian approach. Since we

have no strong prior information, we used an independent

uniform Dirichlet prior [47], p. 582, with parameters aij~1 for all

i,j, for the transition probabilities pij out of each state j. Under the

resulting Dirichlet-multinomial model [47], p. 83, the posterior

distribution of the transition probabilities out of state j is Dirichlet

with parameters nijz1 [47], p. 83. The posterior means are at

(nijz1)=(njzm) [47], p. 577, the add-one pseudocount estimates.

Thus, nonzero underlying transition probabilities will not be

Figure 1. Locations of study sites in (A) the Caribbean and (B)
Great Barrier Reef for which latitude and longitude data were
available (not shown: 16 surveys on 8 Caribbean reefs for
which there were no latitude and longitude data). Surveys within
marine protected areas are shown by orange dots and surveys on
unprotected reefs are in yellow.
doi:10.1371/journal.pone.0026339.g001

Empirical Models of Coral Reef States
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treated as impossible even when the observed transition counts are

zero.

Estimation of initial state distribution
We needed an estimate of the initial proportion of reefs in each

state to project transient dynamics. Assuming each reef is an

independent realization of the same process, the state counts ni(0)

at time 0 have a multinomial distribution with parameters

n~
Pm
i~1

ni(0) and p(0), a vector of state probabilities at time 0.

We used a Dirichlet-multinomial model for the state probabilities,

with a uniform Dirichlet prior, independent of the transition

probability priors. For the Caribbean, we based our estimates on

the state counts for 2006 (22 reefs). For the GBR, there were only

12 observations for 2006, so we based our estimates on the state

counts for 2005 (29 reefs). We used these years, rather than the

years at the start of the data set, because as the most recent data,

they provide the best estimate of the current state of the reefs in

each region, and are therefore appropriate for answering questions

about future dynamics.

Testing for differences in transition probabilities
Likelihood ratio tests [26,48] can be used to test hypotheses

about differences in transition probabilities between regions, time

periods, or reef management categories. The maximum likelihood

estimates of the transition probabilities are given by

p̂pij~
nijPm

i~1

nij

[48]. Similarly, for subsets k~1,2, � � � ,s of the data, let nij(k)

denote the number of observations of a transition from state j to

state i in subset k, and let

p̂pij(k)~
nij(k)Pm

i~1

nij(k)

Table 2. Coefficients bij for responses of transition
probabilities from state j to state i to an explanatory variable
x, where low values of x represent conditions unfavourable to
coral and high values represent values favourable to coral.

Change in coral cover Change in algal cover

Negative2 Zero Positive

Negative1 0 21 21

Zero 1 0 21

Positive 1 1 0

1The change in coral cover is negative if the source state j has higher coral cover
than the destination state i, and vice versa.

2The change in algal cover is negative if the source state j has higher algal cover
than the destination state i, and vice versa.

doi:10.1371/journal.pone.0026339.t002

Figure 2. State dynamics in the Caribbean. Blue circles (year t)and red dots (year t+1), connected by grey lines, are percentage cover of coral and
macroalgal cover on the same reef in two consecutive years. Black lines delimit states, as defined in Table 1. There are 100 pairs of observations in
consecutive years between 1997 and 2006, from 69 reefs.
doi:10.1371/journal.pone.0026339.g002

Empirical Models of Coral Reef States
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denote the maximum likelihood estimates of the transition

probabilities in subset k. Under the null hypothesis that the

transition probabilities are the same in each subset, the likelihood

ratio statistic
{2

Xs

k~1

Xm

i,j~1

nij(k) log
p̂pij

p̂pij(k)

 !

Figure 3. State dynamics in the Great Barrier Reef. Blue circles (year t) and red dots (year t+1), connected by grey lines, are percentage cover of
coral and macroalgal cover on the same reef in two consecutive years. Black lines delimit states, as defined in Table 1. There are 374 pairs of
observations in consecutive years between 1996 and 2006, from 55 reefs.
doi:10.1371/journal.pone.0026339.g003

Table 3. Transition counts between reef states (defined in
Table 1) for the Caribbean data.

A1 B C D E F

A2 283 9 0 11 3 2

B 13 6 4 0 1 0

C 2 0 1 0 0 0

D 2 0 0 11 2 1

E 0 0 0 2 0 0

F 0 0 0 2 0 0

Total4 45 15 5 26 6 3

1Columns are source states.
2Rows are destination states.
3Cell counts are the number of pairs of observations in consecutive years on the
same reef for which the first member of the pair was in the column state and
the second member of the pair was in the row state.

4Totals are the total number of pairs of observations in consecutive years on the
same reef for which the first member of the pair was in the column state.

doi:10.1371/journal.pone.0026339.t003

Table 4. Transition counts between reef states (defined in
Table 1) for the Great Barrier Reef data.

A1 B C D E F

A2 1243 5 0 23 0 0

B 6 2 1 0 0 0

C 0 1 3 0 0 0

D 12 0 0 119 3 12

E 0 0 0 2 0 0

F 0 0 0 10 0 51

Total4 142 8 4 154 3 63

1Columns are source states.
2Rows are destination states.
3Cell counts are the number of pairs of observations in consecutive years on the
same reef for which the first member of the pair was in the column state and
the second member of the pair was in the row state.

4Totals are the total number of pairs of observations in consecutive years on the
same reef for which the first member of the pair was in the column state.

doi:10.1371/journal.pone.0026339.t004

Empirical Models of Coral Reef States
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is asymptotically distributed as x2 s{1ð Þm m{1ð Þð Þ [48]. We

tested three kinds of null hypothesis:

1. That the transition probabilities did not differ between the

Caribbean and GBR.

2. That within each region, the transition probabilities did not

differ between the first (1996–2000) and second (2001–2006)

five-year periods of the decade of observations. This is one of

the simplest ways of checking the assumption that transition

probabilities are constant over time. Other ways of dividing the

time period are possible, but not explored here. For example,

we could divide the time period into a larger number of subsets,

but this would result in having small numbers of observations

in each subset. It would also be interesting to divide the

observations into ecologically relevant subsets, based on the

occurrence of region-wide disturbance events such as strong El

Niño years. Again, we have not done this because it is likely

that most such subsets would be small. A possible alternative is

the regression approach as described in Environmental Change

Scenarios below, with year and/or climatic variables as

explanatory variables.

3. That within the Caribbean alone, the transition probabilities

did not differ between reefs inside and outside MPAs. This

allows us to investigate the effects of reef management on

community dynamics. The corresponding test was not

worthwhile for the GBR, where only two sampled reefs were

outside MPAs.

These likelihood ratio tests do not fall within the Bayesian

framework described above. However, likelihood ratio tests for

problems of this kind are well-known and easy to interpret. The

Bayes factors that would be used in a corresponding Bayesian

analysis are somewhat harder to implement, and would require

some care in the choice of an appropriate prior distribution [49,

pp. 159–161]. In any case, the results of all our tests were clear-cut.

General algorithm for derived statistics
We used the following algorithm to estimate the distribution of

the derived statistics described below, for which we do not know

the forms of the posterior distributions,:

1. For each of many replicates (we used 10000 in all cases):

a. Take a sample from the posterior Dirichlet distribution for

each column of the transition probability matrix [47], p. 582.

b. Take a sample from the posterior Dirichlet distribution for

the initial state probabilities [47], p. 582.

c. Calculate and store the value of any of the derived statistics

described below.

2. The result is a sample from the posterior distribution of the

derived statistic. In particular, the sample mean and

symmetrical quantiles of the distribution of the derived

statistic provide estimates of the posterior mean and equal-

tailed credible intervals for such statistics [47], pp. 37–39. We

Figure 4. Posterior (solid lines) and prior (dashed lines) distributions of transition probabilities in the Caribbean. The panel in row i,
column j is for transitions from state j to state i, as in Equation 1. See Table 1 for state definitions.
doi:10.1371/journal.pone.0026339.g004

Empirical Models of Coral Reef States
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report 50% and 95% equal-tailed credible intervals for all

such statistics.

Stationary state probabilities
As time goes to infinity, most Markov models converge to a

stationary distribution of state probabilities, from any initial

distribution. In our case, our Bayesian estimation method

ensures that all estimated transition probabilities are positive,

and so this stationary distribution is unique [50], section 4.5.

This stationary distribution (which we denote by p(?)) is the

right eigenvector (normalized to sum to 1) of the transition

probability matrix P corresponding to the eigenvalue with the

largest magnitude [28]. The stationary distribution gives a

projection of the long-term equilibrium of the system, if

conditions were to remain constant. It is important to remember

that this is not a forecast of what will happen, because we do not

expect conditions to remain constant. Nevertheless, as in the

analogous case of matrix population models, the stationary

distribution is a powerful way to study the current dynamics of

the system [50], pp. 29–31.

Percentage cover of coral and macroalgae
Iterating Equation 2 allows us to calculate the projected

proportion of each state at any time. However, we would also

like projections of the cover of coral and macroalgae at any time.

We obtain these as follows. Denote by qc(t) the projected coral

cover at time t. Then

qc tð Þ~
Xm

i~1

cipi(t) ð3Þ

where ci is the mean coral cover for reefs in state i. Similarly, the

projected macroalgal cover qa(t) at any time t is

qa tð Þ~
Xm

i~1

aipi(t) ð4Þ

where ai is the mean macroalgal cover for reefs in state i. We

estimated ci and ai by averaging over all observations in each state i

(we then treated these estimates as if they were known, because

incorporating the uncertainty in them would require a much more

complex analysis). We also obtained estimates of the stationary

percentage cover of coral and macroalgae by applying Equations 3

and 4 to the stationary state probabilities pi ?ð Þ, calculated as

above.

Damping ratio
The damping ratio (the ratio of the largest eigenvalue to the

magnitude of the second largest eigenvalue) is a measure of the

rate of approach to the stationary distribution [50], pp. 95–97.

The larger the damping ratio, the more rapidly the system

approaches equilibrium.

Figure 5. Posterior (solid lines) and prior (dashed lines) distributions of transition probabilities in the Great Barrier Reef. The panel in
row i, column j is for transitions from state j to state i, as in Equation 1. See Table 1 for state definitions.
doi:10.1371/journal.pone.0026339.g005

Empirical Models of Coral Reef States
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Environmental change scenarios
To study how the system might respond to changes in

environmental conditions, we need to define patterns of change

in transition probabilities. Any such changes must maintain the

constraints that each transition probability is between zero and

one, and each column of the transition probability matrix sums to

1. Within these constraints, there are many possible patterns of

change [50], p. 253. A natural choice is to consider the way we

would model the response of each column of the transition

probability matrix to some explanatory variable x. Since the

counts of transitions out of each state have a multinomial

distribution, the simplest statistical approach would be a

baseline-category logit model [51], section 7.1:

log
pij(x)

pjj(x)
~aijzbijx:

Here, we view each transition probability as a function pij(x) of the

explanatory variable. We assume a linear model for the log of the

ratio of a given transition probability to a reference probability, in

this case the probability pjj(x) of remaining in the source state.

The coefficient bij gives the slope of the response (this coefficient is

zero if i = j). We represent the current conditions by x~0 and set

the intercept to aij~log
pij(0)

pjj(0)
(so that the modelled transition

probabilities at x~0 match the current estimates).

In reality, we did not have measurements of a relevant

explanatory variable, so we could not estimate the coefficients bij .

Instead, we set the signs of the coefficients (Table 2) to match what

we would expect to happen as conditions change along a continuum

from conditions unfavourable to coral (e.g. increased sea surface

temperature) to those favourable to coral (e.g. increased herbivory).

We set the magnitudes of all nonzero coefficients to be 1, as we had

no information on them, and examined an arbitrary range of

explanatory variable values from 22 to +2.

Implementation
We implemented the methods described here in Matlab

R2009b (The Mathworks Inc., Natick, MA). The code is available

under the GNU Public License from http://www.liv.ac.uk/

,matts/coralMarkov.html.

Results

Distribution of reef states
In the Caribbean (Figure 2), most observations fell in states A, B,

or D (Table 1), with low to moderate cover of coral and/or

macroalgae. There were frequent transitions between these states,

mostly as a result of changes in either coral or macroalgal cover,

but not both at the same time (Figure 2: most lines are parallel to

one axis or the other). In the Great Barrier Reef (Figure 3), most

observations were concentrated in states A, D, and F (Table 1),

with low macroalgal cover and low to high coral cover. There was

Figure 6. Projected percentage of Caribbean reefs in each state (panel labels match state definitions in Table 1) over the 10 years
from 2006 (Year = 0) and at equilibrium (Year = ‘). The black line is the posterior mean, the dark shaded area is the 50% equal-tailed credible
interval, and the light shaded area is the 95% equal-tailed credible interval.
doi:10.1371/journal.pone.0026339.g006

Empirical Models of Coral Reef States
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less change in reef composition from year to year in the Great

Barrier Reef (Figure 3) than the Caribbean (Figure 2).

Differences in transition probabilities between regions
There was strong evidence for differences in transition probabil-

ities between regions (likelihood ratio statistic 67.52, 30 df,

p = 0.0001). Thus, we analyzed the data for the Caribbean

(Table 3) and Great Barrier Reef (Table 4) separately. The

transition probabilities about which we are most certain are those

for which the posterior distributions have relatively sharp peaks,

corresponding to large numbers of observations of the source state.

In particular, we have fairly large numbers of transitions out of states

A and D in both regions (Tables 3 and 4). In the Caribbean, the

probability of persisting in state A, which has up to 25% cover of

both corals and macroalgae, (Figure 4A) was lower than in the Great

Barrier Reef (Figure 5A), while the probability of transition from

state A to state B (which has up to 25% coral cover and 25–50%

macroalgal cover) was higher in the Caribbean (Figure 4G) than the

Great Barrier Reef (Figure 5G). Persistence in state D (25–50%

coral cover and up to 25% macroalgal cover) was lower for the

Caribbean (Figure 4V) than for the Great Barrier Reef (Figure 5V).

Differences in transition probabilities between time
periods and management regime

There was little evidence for differences in transition

probabilities between the periods 1996–2000 and 2001–2006

in either region. In the Caribbean, the p-value was 0.998

(likelihood ratio statistic 12.59, 30 df, 35 pairs of observations in

1996–2000 and 65 pairs in 2001–2006). In the GBR, the p-value

was 0.982 (likelihood ratio statistic 16.10, 30 df, 227 pairs of

observations in 1996–2000 and 147 pairs in 2001–2006). In the

Caribbean, there was little evidence for differences in transition

probabilities between the 51 pairs of observations from reefs

inside MPAs and the 43 pairs of observations from reefs outside

MPAs (likelihood ratio statistic 20.92, 30 df, p = 0.890).

Therefore, we pooled the data for both periods and for reefs

inside and out of MPAs.

Projected state and cover distributions
The Caribbean system is projected to approach an equilibrium

distribution within about 5 years (posterior mean damping ratio

2.55, 95% credible interval (1.78, 4.02)) if conditions remain as

they were during the observation period (Figure 6). Approach to

equilibrium involves a reduction in the proportion of reefs in state

A (up to 25% cover of both corals and macroalgae) and an

increase in the proportion of reefs in state B (up to 25% coral

cover, 25–50% macroalgal cover. The other states are projected to

remain relatively rare. This pattern of change is likely to be caused

by the large estimated transition probability from state A to state B

(Figure 4G). The overall consequence is little change in projected

coral cover (Figure 7A, equilibrium posterior mean 18%, 95%

credible interval (15,21)%) and an increase of a few percent in

Figure 7. Projected percentage cover of (A) corals and (B) macroalgae in the Caribbean over the 10 years from 2006 (Year = 0) and
at equilibrium (Year = ‘). The black line is the posterior mean, the dark shaded area is the 50% equal-tailed credible interval, and the light shaded
area is the 95% equal-tailed credible interval.
doi:10.1371/journal.pone.0026339.g007
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projected macroalgal cover (Figure 7B, equilibrium posterior

mean 22%, 95% credible interval (19,26)%).

Approach to equilibrium is projected to be somewhat slower in

the Great Barrier Reef (Figure 8, posterior mean damping ratio

1.26, 95% credible interval 1.17, 1.38), with a moderate decrease

in the percentage of reefs in state D (25–50% coral, up to 25%

macroalgae) and a moderate increase in the percentage of reefs in

state F (more than 50% coral, up to 50% algae). The overall

consequence is little change in projected cover of coral (Figure 9A,

equilibrium posterior mean 29%, 95% credible interval (25, 33)%)

or macroalgae (Figure 9B, equilibrium posterior mean 7%, 95%

credible interval (6,10)%). Compared to the Caribbean, the Great

Barrier Reef is projected to maintain higher coral cover and much

lower macroalgal cover, if conditions remain as they were during

the observation period.

Moderate changes in the definitions of reef states do not

substantially alter our projections about coral and macroalgal

cover (Information S1), although they obviously alter the projected

proportion of reefs in each state.

Environmental change scenarios
In the Caribbean, under conditions more favourable to coral

(e.g. increased herbivory), coral cover (Figure 10A) is projected to

increase and macroalgal cover (Figure 10B) to decrease, and vice

versa under conditions less favourable to coral (e.g. increased sea

surface temperature). The uncertainty in projected coral cover is

much higher under conditions highly favourable to coral

(Figure 10A, high values of x, an abstract measure of

environmental condition). This may be because relatively few

reefs were observed with high coral cover, making it difficult to

project their dynamics. In the Great Barrier Reef, the responses

of the posterior mean coral (Figure 11A) and macroalgal

(Figure 11B) cover were qualitatively similar. However, the

uncertainty in projected coral cover remains low, while the

uncertainty in projected macroalgal cover becomes very high

under conditions very unfavourable for corals (Figure 11B, low

values of x). Again, this may be because we have few observations

on reefs with high macroalgal cover in the Great Barrier Reef,

making it difficult to project their dynamics.

Discussion

Fitting simple models to our Caribbean and Great Barrier Reef

databases of changes in coral and macroalgal cover allowed us to

examine differences both in current dynamics of reefs and what

these dynamics may mean for their long-term equilibria. Not

surprisingly, transition probabilities were significantly different

between the Caribbean and the Great Barrier Reef. This led to

differences in the projected different equilibrium distributions of

the proportion of reefs in each state, if conditions remain as they

are now; the Caribbean has much lower coral cover and higher

macroalgal cover than the Great Barrier Reef, both now and at

equilibrium (Figures 7 and 9). These and other differences between

these two well-studied regions are thought to be caused by a

variety of factors including far more intense fishing in the

Figure 8. Projected percentage of reefs on the Great Barrier Reef in each state (panel labels match state definitions in Table 1) over
the 10 years from 2005 (Year = 0) and at equilibrium (Year = ‘). The black line is the posterior mean, the dark shaded area is the 50% equal-
tailed credible interval, and the light shaded area is the 95% equal-tailed credible interval.
doi:10.1371/journal.pone.0026339.g008
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Caribbean, disease outbreaks that nearly extirpated dominant

coral genera and grazer species in the region [52], and possibly

also the order of magnitude higher coral richness on the Great

Barrier Reef [53].

Given the striking changes coral reefs in both regions underwent

in the late 1970s and early 1980s (particularly in the Caribbean),

transition probabilities during that period were probably very

different. For example, the regional baseline macroalgal cover in

the Caribbean might have been between 5 and 15% [21], and

regional hard coral cover in the 1970s was around 25–50% [3,4].

From our state definitions (Table 1), we would therefore expect

that the high-algal states B, C, and E would have been rarer, and

the low-algal states A, D, and F (especially D, which has 25–50%

hard coral cover) would have been more common. This could

have arisen from some combination of lower probabilities of

transition from (A, D, F) to (B, C, E), higher probabilities of

transition from (B, C, E) to (A, D, F), lower probabilities of

persistence in (B, C, E), and higher probabilities of persistence in

(A, D, F).

The recent regional distribution of coral and macroalgal cover is

fairly close to the projected equilibrium in both regions (Figures 7

and 9). This is an important finding because so little is known

about lags in the response of large scale reef dynamics to changes

in the disturbance regime. The short-term impacts of recent

anthropogenic disturbances, e.g., fishing and ocean warming, are

well-documented, yet it remains unclear whether past disturbanc-

es can lead to additional future changes in reef state. Our

estimated equilibrium distributions are projections, not forecasts,

in the terminology of Caswell [50], section 2.5. We are estimating

what would happen if conditions remained as they are now, not

what will happen under realistic scenarios of future environmen-

tal change such as increased sea surface temperature and reduced

pH [54], or under changes in the extent and enforcement of

MPAs [55] . Nevertheless, such projections are useful (as they

have been in population biology) because they help us to

understand the current dynamics of the system. The structure of

our model guarantees that the equilibrium distribution does not

depend on initial conditions (Materials and Methods: stationary

state probabilities). This does not imply that all reefs must end up

with similar coral cover. For example, it would be possible to

have an equilibrium distribution in which there were two high-

probability states, of high and low coral cover, and low

probabilities of transition between these states. This is the

outcome we would expect from a stochastic system with

alternative stable states [56].

Our results suggest that in both regions transition probabil-

ities were not significantly different between the first and second

halves of the observation period. Although it is likely that

environmental conditions vary from year to year in ways that

affect transition probabilities in the short term, this suggests that

there were not strong or detectable trends in the underlying

dynamics of the systems in the medium term. Our assumption of

homogeneity when estimating transition probabilities is there-

fore plausible. This may seem surprising, given that the first

Figure 9. Projected percentage cover of (A) corals and (B) macroalgae in the Great Barrier Reef over the 10 years from 2005
(Year = 0) and at equilibrium (Year = ‘). The black line is the posterior mean, the dark shaded area is the 50% equal-tailed credible interval, and
the light shaded area is the 95% equal-tailed credible interval.
doi:10.1371/journal.pone.0026339.g009
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time period includes the unusually large 1998 El Niño event,

which caused substantial coral bleaching in both the Caribbean

and the GBR [57]. The lack of evidence for effects on transition

probabilities may be because in both regions, coral mortality

was patchy rather than widespread, and recovery was generally

rapid [57]. In addition, there were major bleaching events

during the second time period in both regions [58,59]. We are

unlikely to have much power to detect slow long-term changes

[6], given that we only have observations over a single decade.

This general finding of our model is concordant with several

other studies suggesting a degree of regional stasis in coral reef

community composition since the mid-1980s [4,60].

We found no evidence for an effect of protection, i.e. MPA

status, on the dynamics of reefs in the Caribbean. This contrasts

with other studies finding higher coral cover [61,62] or rate of

increase of coral cover in MPAs [22,35], or lower rate of recovery

from disturbance in MPAs [62,63]. However, the sample size for

this part of our study was fairly small (51 pairs of observations

from reefs inside MPAs, 43 pairs from reefs not in MPAs), and it

is probably more difficult to detect changes in transition

probabilities than changes in overall coral cover. Thus, the

power to detect effects of MPA status may have been low.

Furthermore, some MPAs may be too new to affect coral cover,

which can take 15–20 years to respond to MPA establishment ,

and not all MPAs may be managed to provide effective

protection [22]. This may be partly because of the different

and sometimes conflicting needs of stakeholders [64]. The level of

compliance with marine reserve rules varies with socioeconomic

factors, and alters the effectiveness of these reserves [65]. Effective

protection may also be more difficult to achieve in marine than

terrestrial reserves, because of the relative openness of marine

populations, indistinct ownership boundaries in the sea, targeting

of higher trophic levels for harvesting in marine than terrestrial

populations, and the underlying differences in trophic structure

between marine and terrestrial ecosystems [66]. These factors

could contribute to the apparent absence of MPA effects in some

studies [23]. In summary, MPAs would only be expected to affect

transition probabilities if MPA status consistently alters key

ecological processes, and this may not always be achieved.

It would be premature to conclude that MPAs do not affect the

probabilities of transitions between reef states. In particular, some

of the large difference in coral cover between the Great Barrier

Reef and the Caribbean may be due to differences in

management. For example, approximately 70% of Australian

reefs, but only 10% of Caribbean reefs are inside MPAs [55], and

30% of reefs in on the Great Barrier Reef are in no-take marine

reserves [67]. Although the proportions were less different in our

sample (96% of GBR and 65% of Caribbean reefs in our sample

are from MPAs: thus reefs in MPAs are strikingly over-

represented in our samples from both regions), management

may be partly responsible for regional differences in dynamics

that we detected. Recent estimates suggest that the percent of

Figure 10. Projected responses of (A) coral cover and (B) macroalgal cover in the Caribbean to environmental change scenarios
(horizontal axis: x = 0 corresponds to current conditions, negative values to conditions less favourable for coral, and positive values
to conditions more favourable for coral). The black line is the posterior mean, the dark shaded area is the 50% equal-tailed credible interval, and
the light shaded area is the 95% equal-tailed credible interval.
doi:10.1371/journal.pone.0026339.g010
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protected Caribbean reefs has increased considerably [68], but

reefs need to be protected for several years before benefits can be

maximized [22]. The level of enforcement may also vary between

the regions. In the Atlantic, 12% of MPAs were rated as

effectively managed compared to 44% of MPAs in Australia [68].

It is also possible that variation in other factors such as depth,

habitat type and sampling methodology between studies within a

region may make it difficult to detect effects of interest in analyses

of MPA effects [69,70,71].

Our primary analyses, e.g., projections of the equilibrium state

distributions, were based on the assumption that the environ-

mental conditions during the time the monitoring data were

collected will continue into the future. However, given increases

in human population growth, coastal development and fossil fuel

usage, this seems very unlikely. Most marine ecologists expect the

oceans of the near future to be warmer, more acidic, less

productive, and even more overfished than they currently are

[72,73]. We explored how environmental changes in general

might modify reef state dynamics and equilibrium state

distributions by altering the state transition probabilities from

the values estimated from recent monitoring data. It is impossible

to know exactly how potential future changes in the environment

will alter all of the transition probabilities in the matrix.

Therefore, we modelled a range of possible sizes of effect, in a

way that corresponds to the simplest form of environmental

explanatory variable. At one extreme, the probability of

transitions away from states with high macroalgal cover towards

high coral cover was increased (high positive values in Figures 10

and 11). This perhaps unrealistic scenario could represent a

combination of local management that effectively increases

benthic grazing, thereby decreasing macroalgal cover, and coral

acclimation to various local and global threats. At the other

extreme are more pessimistic scenarios (negative values in

Figures 10 and 11), in which we increased transitions into reef

states with low coral cover and/or high macroalgal cover. This

scenario could be caused by increased coral bleaching and disease

as ocean temperatures continue to increase throughout the 21st

century.

Interestingly, the uncertainty in responses to environmental

change differs between regions and between directions of

change. In the Caribbean (Figure 10), uncertainty about the

future state equilibrium increases as conditions become more

favourable for corals, while the opposite occurs in the Great

Barrier Reef (Figure 11). Intuitively, this is because change

towards a situation for which we have little information

increases uncertainty relative to a change towards a situation

for which we have more information. For example, in the Great

Barrier Reef, there were relatively few transitions observed into

or out of states with more than 25% macroalgae and less than

50% coral (states B, C, and E), and so we are uncertain about

the probabilities of transitions into and out of these states. If

conditions change so that such states become more common,

Figure 11. Projected responses of (A) coral cover and (B) macroalgal cover in the Great Barrier Reef to environmental change
scenarios (horizontal axis: x = 0 corresponds to current conditions, negative values to conditions less favourable for coral, and
positive values to conditions more favourable for coral). The black line is the posterior mean, the dark shaded area is the 50% equal-tailed
credible interval, and the light shaded area is the 95% equal-tailed credible interval.
doi:10.1371/journal.pone.0026339.g011
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the uncertainty in these transition probabilities will have more

effect on the overall uncertainty about the equilibrium

distribution of the model. While the scenario analysis described

here is not immediately going to provide a management tool,

the underlying statistical approach [baseline-category logit

models: 51, section 7.1] could in principle be used to make

more realistic estimates of the effects of measured environmental

variables on transition probabilities, and thus ultimately on the

risk of changes in coral and macroalgal cover under environ-

mental change scenarios. Statistical models such as the one we

described here can therefore complement much more complex

and mechanistic models of reef ecosystems [20,74] as tools for

ecological risk analysis.

In conclusion, the modelling approach used here allows us to

detect major differences in probabilities of transitions among reef

states with different levels of coral and macroalgal cover between

the Caribbean and Great Barrier Reef, and to understand the

consequences of those differences for the long-term behaviour of

reefs in both regions. Our approach focuses on dynamics rather

than current patterns, and is based on extensive data rather than

hypotheses about mechanisms. Extensions of our approach that

include environmental variables are likely to be useful in risk

analysis for informing management decisions about coral reefs.
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